REFERENCES

1. Fang Y, Hou Y, Fu X, Wang X. Semiconducting polymers for oxygen evolution reaction under light illumination. Chem Rev 2022;122:4204-56.

2. Kranz C, Wächtler M. Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes. Chem Soc Rev 2021;50:1407-37.

3. Morikawa T, Sato S, Sekizawa K, Suzuki TM, Arai T. Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf. Acc Chem Res 2022;55:933-43.

4. Pan J, Shen S, Chen L, Au C, Yin S. Core-shell photoanodes for photoelectrochemical water oxidation. Adv Funct Mater 2021;31:2104269.

5. Thalluri SM, Bai L, Lv C, Huang Z, Hu X, Liu L. Strategies for semiconductor/electrocatalyst coupling toward solar-driven water splitting. Adv Sci 2020;7:1902102.

6. Niu F, Wang D, Li F, Liu Y, Shen S, Meyer TJ. Hybrid photoelectrochemical water splitting systems: from interface design to system assembly. Adv Energy Mater 2020;10:1900399.

7. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8.

8. Zhao E, Du K, Yin PF, et al. Advancing photoelectrochemical energy conversion through atomic design of catalysts. Adv Sci 2022;9:e2104363.

9. Marwat MA, Humayun M, Afridi MW, et al. Advanced catalysts for photoelectrochemical water splitting. ACS Appl Energy Mater 2021;4:12007-31.

10. Corby S, Rao RR, Steier L, Durrant JR. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat Rev Mater 2021;6:1136-55.

11. Yao T, An X, Han H, Chen JQ, Li C. Photoelectrocatalytic materials for solar water splitting. Adv Energy Mater 2018;8:1800210.

12. Zhuang Z, Li Y, Yu R, et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat Catal 2022;5:300-10.

13. Zhuang Z, Huang J, Li Y, Zhou L, Mai L. The holy grail in platinum-free electrocatalytic hydrogen evolution: molybdenum-based catalysts and recent advances. ChemElectroChem 2019;6:3570-89.

14. Huang J, Zhuang Z, Zhao Y, et al. Back-gated van der waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew Chem Int Ed Engl 2022;61:e202203522.

15. Sun R, Zhang Z, Li Z, Jing L. Review on photogenerated hole modulation strategies in photoelectrocatalysis for solar fuel production. ChemCatChem 2019;11:5875-84.

16. Rahman MZ, Edvinsson T, Gascon J. Hole utilization in solar hydrogen production. Nat Rev Chem 2022;6:243-58.

17. Sahoo PP, Mikolášek M, Hušeková K, et al. Si-based metal-insulator-semiconductor structures with RuO2-(IrO2) films for photoelectrochemical water oxidation. ACS Appl Energy Mater 2021;4:11162-72.

18. Zhang B, Yu S, Dai Y, et al. Nitrogen-incorporation activates NiFeOx catalysts for efficiently boosting oxygen evolution activity and stability of BiVO4 photoanodes. Nat Commun 2021;12:6969.

19. Wang J, Liao T, Wei Z, Sun J, Guo J, Sun Z. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods 2021;5:e2000988.

20. Liu G, Yang Y, Li Y, et al. Band structure engineering toward low-onset-potential photoelectrochemical hydrogen production. ACS Mater Lett 2020;2:1555-60.

21. Li F, Benetti D, Zhang M, Feng J, Wei Q, Rosei F. Modulating the 0D/2D interface of hybrid semiconductors for enhanced photoelectrochemical performances. Small Methods 2021;5:e2100109.

22. Tashakory A, Karjule N, Abisdris L, Volokh M, Shalom M. Mediated growth of carbon nitride films via spray-coated seeding layers for photoelectrochemical applications. Adv Sustain Syst 2021;5:2100005.

23. Karjule N, Singh C, Barrio J, et al. Carbon nitride-based photoanode with enhanced photostability and water oxidation kinetics. Adv Funct Mater 2021;31:2101724.

24. Thorne JE, Jang JW, Liu EY, Wang D. Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem Sci 2016;7:3347-54.

25. Wang X, Sun W, Tian Y, et al. Conjugated π electrons of MOFs drive charge separation at heterostructures interface for enhanced photoelectrochemical water oxidation. Small 2021;17:e2100367.

26. Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 2011;4:958-64.

27. Jiang P, Yu K, Yuan H, et al. Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents. J Mater Chem A 2021;9:9809-14.

28. Zhang T, Lu S. Sacrificial agents for photocatalytic hydrogen production: effects, cost, and development. Chem Catalysis 2022;2:1502-5.

29. Shen S, Lindley SA, Chen X, Zhang JZ. Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy Environ Sci 2016;9:2744-75.

30. Prasad U, Young JL, Johnson JC, et al. Enhancing interfacial charge transfer in a WO3/BiVO4 photoanode heterojunction through gallium and tungsten co-doping and a sulfur modified Bi2O3 interfacial layer. J Mater Chem A 2021;9:16137-49.

31. Sun D, Zhang X, Shi A, et al. Metal-free boron doped g-C3N5 catalyst: efficient doping regulatory strategy for photocatalytic water splitting. Appl Surface Sci 2022;601:154186.

32. Nyarige JS, Paradzah AT, Krüger TPJ, Diale M. Mono-Doped and Co-Doped nanostructured hematite for improved photoelectrochemical water splitting. Nanomaterials 2022;12:366.

33. Meng L, Rao D, Tian W, Cao F, Yan X, Li L. Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn10In16S34 nanosheet arrays toward improved photoelectrochemical performance. Angew Chem Int Ed Engl 2018;57:16882-7.

34. Yang R, Zhu R, Fan Y, Hu L, Chen Q. In situ synthesis of C-doped BiVO4 with natural leaf as a template under different calcination temperatures. RSC Adv 2019;9:14004-10.

35. Wen L, Li X, Zhang R, et al. Oxygen vacancy engineering of MOF-derived Zn-doped Co3O4 nanopolyhedrons for enhanced electrochemical nitrogen fixation. ACS Appl Mater Interfaces 2021;13:14181-8.

36. Wang S, Wang X, Liu B, et al. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting. Nanoscale 2021;13:17989-8009.

37. Pan JB, Wang BH, Wang JB, et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew Chem Int Ed Engl 2021;60:1433-40.

38. Zhang R, Ning X, Wang Z, et al. Significantly promoting the photogenerated charge separation by introducing an oxygen vacancy regulation strategy on the FeNiOOH Co-catalyst. Small 2022;18:e2107938.

39. Ji M, Chen R, Di J, et al. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity. J Colloid Interface Sci 2019;533:612-20.

40. Zhao Q, Liu Z, Guo Z, Ruan M, Yan W. The collaborative mechanism of surface S-vacancies and piezoelectric polarization for boosting CdS photoelectrochemical performance. Chem Eng J 2022;433:133226.

41. Ma M, Zhang K, Li P, Jung MS, Jeong MJ, Park JH. Dual Oxygen and tungsten vacancies on a WO3 Photoanode for enhanced water oxidation. Angew Chem Int Ed Engl 2016;55:11819-23.

42. Fernández-climent R, Giménez S, García-tecedor M. The role of oxygen vacancies in water splitting photoanodes. Sustain Energy Fuels 2020;4:5916-26.

43. Xu W, Tian W, Meng L, Cao F, Li L. Interfacial chemical bond-modulated z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv Energy Mater 2021;11:2003500.

44. Li J, Yuan H, Zhang W, et al. Advances in Z-scheme semiconductor photocatalysts for the photoelectrochemical applications: A review. Carbon Energy 2022;4:294-331.

45. Mane P, Bae H, Burungale V, et al. Interface-engineered Z-scheme of BiVO4/g-C3N4 photoanode for boosted photoelectrochemical water splitting and organic contaminant elimination under solar light. Chemosphere 2022;308:136166.

46. Maity D, Karmakar K, Pal D, Saha S, Khan GG, Mandal K. One-dimensional p-ZnCo2O4/n-ZnO nanoheterojunction photoanode enabling photoelectrochemical water splitting. ACS Appl Energy Mater 2021;4:11599-608.

47. Ho W, Chen J, Wu J. Epitaxial, energetic, and morphological synergy on photocharge collection of the Fe2TiO5/ZnO nanodendrite heterojunction array photoelectrode for photoelectrochemical water oxidation. ACS Sustain Chem Eng 2021;9:8868-78.

48. Hao J, Zhuang Z, Cao K, et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat Commun 2022;13:2662.

49. Dong G, Hu H, Huang X, Zhang Y, Bi Y. Rapid activation of Co3O4 cocatalysts with oxygen vacancies on TiO2 photoanodes for efficient water splitting. J Mater Chem A 2018;6:21003-9.

50. Cao X, Wang Y, Lin J, Ding Y. Ultrathin CoOx nanolayers derived from polyoxometalate for enhanced photoelectrochemical performance of hematite photoanodes. J Mater Chem A 2019;7:6294-303.

51. Li H, Yin M, Li X, Mo R. Enhanced photoelectrochemical water oxidation performance in bilayer TiO2/α-Fe2O3 Nanorod Arrays Photoanode with Cu:NiOx as hole transport layer and Co-Pi as Cocatalyst. ChemSusChem 2021;14:2331-40.

52. Wei J, Zhou C, Xin Y, Li X, Zhao L, Liu Z. Cooperation effect of heterojunction and co-catalyst in BiVO4/Bi2S3/NiOOH photoanode for improving photoelectrochemical performances. New J Chem 2018;42:19415-22.

53. Zhang B, Huang X, Hu H, Chou L, Bi Y. Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts for photoelectrochemical water splitting. J Mater Chem A 2019;7:4415-9.

54. Wang T, Long X, Wei S, et al. Boosting hole transfer in the fluorine-doped hematite photoanode by depositing ultrathin amorphous FeOOH/CoOOH Cocatalysts. ACS Appl Mater Interfaces 2020;12:49705-12.

55. Vo T, Tai Y, Chiang C. Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting. Appl Catalysis B Environ 2019;243:657-66.

56. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes. J Am Chem Soc 2012;134:16693-700.

57. Li M, Liu T, Yang Y, et al. Zipping Up NiFe(OH)x-encapsulated hematite to achieve an ultralow turn-on potential for water oxidation. ACS Energy Lett 2019;4:1983-90.

58. Zhang K, Liu J, Wang L, et al. Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis. J Am Chem Soc 2020;142:8641-8.

59. Liu Z, Du Y, Zhang P, Zhuang Z, Wang D. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021;4:3161-94.

60. Kaplan A, Yuan Z, Benck JD, et al. Current and future directions in electron transfer chemistry of graphene. Chem Soc Rev 2017;46:4530-71.

61. Rai S, Ikram A, Sahai S, Dass S, Shrivastav R, Satsangi VR. CNT based photoelectrodes for PEC generation of hydrogen: a review. Inter J Hydrog Energy 2017;42:3994-4006.

62. Kang Z, Lee ST. Carbon dots: advances in nanocarbon applications. Nanoscale 2019;11:19214-24.

63. Ali M, Pervaiz E, Sikandar U, Khan Y. A review on the recent developments in zirconium and carbon-based catalysts for photoelectrochemical water-splitting. Inter J Hydrog Energy 2021;46:18257-83.

64. Zhao Z, Zheng L, Hu W, Zheng H. Synergistic effect of silane and graphene oxide for enhancing the photoelectrochemical water oxidation performance of WO3NS arrays. Electrochimica Acta 2018;292:322-30.

65. Ðorđević L, Arcudi F, Cacioppo M, Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat Nanotechnol 2022;17:112-30.

66. Zhai Y, Zhang B, Shi R, et al. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis. Advan Energy Mater 2022;12:2103426.

67. Liang Q, Yan X, Li Z, et al. Replacing Ru complex with carbon dots over MOF-derived Co3O4/In2O3 catalyst for efficient solar-driven CO2 reduction. J Mater Chem A 2022;10:4279-87.

68. Li F, Liu Y, Chen Q, et al. Transient photovoltage study of the kinetics and synergy of electron/hole co-extraction in MoS2/Ag-In-Zn-S/carbon dot photocatalysts for promoted hydrogen production. Chem Eng J 2022;439:135759.

69. Ye K, Wang Z, Gu J, et al. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ Sci 2017;10:772-9.

70. Wang Y, Godin R, Durrant JR, Tang J. Efficient Hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions. Angew Chem Int Ed Engl 2021;60:20811-6.

71. Wang Y, Liu X, Han X, et al. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nat Commun 2020;11:2531.

72. Zhou T, Chen S, Wang J, et al. Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chem Eng J 2021;403:126350.

73. Choi Y, Bae S, Kim B, Ryu J. Atomically-dispersed cobalt ions on polyphenol-derived nanocarbon layers to improve charge separation, hole storage, and catalytic activity of water-oxidation photoanodes. J Mater Chem A 2021;9:13874-82.

74. Rombach FM, Haque SA, Macdonald TJ. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ Sci 2021;14:5161-90.

75. Gao B, Wang T, Li Y, et al. Boosting the stability and photoelectrochemical activity of a BiVO4 photoanode through a bifunctional polymer coating. J Mater Chem A 2021;9:3309-13.

76. Gu X, Chen Z, Li Y, et al. Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted electrocatalyst for overall water splitting. ACS Appl Mater Interfaces 2021;13:24814-23.

77. Li F, Liu Y, Mao B, et al. Carbon-dots-mediated highly efficient hole transfer in I-III-VI quantum dots for photocatalytic hydrogen production. Appl Catalysis B Environ 2021;292:120154.

78. Liu Y, Zhou X, Shen C, et al. Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H2 evolution over g-C3N4 anchored with ferrocene-based hole relay. Catal Sci Technol 2018;8:2853-9.

79. Olshansky JH, Balan AD, Ding TX, Fu X, Lee YV, Alivisatos AP. Temperature-dependent hole transfer from photoexcited quantum dots to molecular species: evidence for trap-mediated transfer. ACS Nano 2017;11:8346-55.

80. Niu F, Zhou Q, Liu R, Hu K. Photoinduced hole hopping across CdS quantum dot surfaces for photoelectrochemical water oxidation. ACS Appl Energy Mater 2022;5:1244-51.

81. Niu F, Zhou Q, Han Y, et al. Rapid hole extraction based on cascade band alignment boosts photoelectrochemical water oxidation efficiency. ACS Catal 2022;12:10028-38.

82. Wu K, Du Y, Tang H, Chen Z, Lian T. Efficient extraction of trapped holes from colloidal CdS nanorods. J Am Chem Soc 2015;137:10224-30.

83. Li XB, Liu B, Wen M, et al. Hole-accepting-ligand-modified CdSe QDs for dramatic enhancement of photocatalytic and photoelectrochemical hydrogen evolution by solar energy. Adv Sci 2016;3:1500282.

84. Forster M, Cheung DWF, Gardner AM, Cowan AJ. Potential and pitfalls: on the use of transient absorption spectroscopy for in situ and operando studies of photoelectrodes. J Chem Phys 2020;153:150901.

85. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M. Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. Phys Chem Chem Phys 2007;9:1453-60.

86. Lian Z, Sakamoto M, Kobayashi Y, et al. Anomalous photoinduced hole transport in type I core/mesoporous-shell nanocrystals for efficient photocatalytic H2 evolution. ACS Nano 2019;13:8356-63.

87. Andrews JL, Cho J, Wangoh L, et al. Hole extraction by design in photocatalytic architectures interfacing CdSe quantum dots with topochemically stabilized tin vanadium oxide. J Am Chem Soc 2018;140:17163-74.

88. Taheri MM, Elbert KC, Yang S, et al. Distinguishing electron and hole dynamics in functionalized CdSe/CdS core/shell quantum dots using complementary ultrafast spectroscopies and kinetic modeling. J Phys Chem C 2021;125:31-41.

89. Yu S, Fan XB, Wang X, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat Commun 2018;9:4009.

90. Fan XB, Yu S, Wang X, et al. Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration. Adv Mater 2019;31:e1804872.

91. Bredar ARC, Chown AL, Burton AR, Farnum BH. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl Energy Mater 2020;3:66-98.

92. Gimenez S, Dunn HK, Rodenas P, et al. Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. J Electroanal Chem 2012;668:119-25.

93. Cui J, Daboczi M, Regue M, et al. 2D bismuthene as a functional interlayer between BiVO4 and NiFeOOH for enhanced oxygen-evolution photoanodes. Adv Funct Mater 2022:2207136-48.

94. Abbas MA, Bang JH. Anomalous transition of hole transfer pathways in gold nanocluster-sensitized TiO2 photoelectrodes. ACS Energy Lett 2020;5:3718-24.

95. Kolay A, Kokal RK, Kalluri A, et al. New antimony selenide/nickel oxide photocathode boosts the efficiency of graphene quantum-dot co-sensitized solar cells. ACS Appl Mater Interfaces 2017;9:34915-26.

96. Wijayantha KG, Saremi-Yarahmadi S, Peter LM. Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys Chem Chem Phys 2011;13:5264-70.

97. Cummings CY, Marken F, Peter LM, Wijayantha KG, Tahir AA. New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J Am Chem Soc 2012;134:1228-34.

98. Peter LM, Wong LH, Abdi FF. Revealing the influence of doping and surface treatment on the surface carrier dynamics in hematite nanorod photoanodes. ACS Appl Mater Interfaces 2017;9:41265-72.

99. Zheng H, Lu Y, Ye KH, et al. Atomically thin photoanode of InSe/graphene heterostructure. Nat Commun 2021;12:91.

100. Bard AJ, Faulkner LR. Scanning electrochemical microscopy, 2nd ed.; New York: Marcel Dekker. 2001.

101. Liu N, Qin Y, Han M, et al. Investigation of regeneration kinetics of a carbon-dot-sensitized metal oxide semiconductor with scanning electrochemical microscopy. ACS Appl Energy Mater 2018;1:1483-8.

102. Yu Z, Huang Q, Jiang X, et al. Effect of a cocatalyst on a photoanode in water splitting: a study of scanning electrochemical microscopy. Anal Chem 2021;93:12221-9.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/